Initial commit

This commit is contained in:
lumi 2025-06-17 11:23:59 +10:00
commit f09f27f553
Signed by: luaneko
GPG Key ID: 406809B8763FF07A
12 changed files with 1713 additions and 0 deletions

1
.gitignore vendored Normal file
View File

@ -0,0 +1 @@
/target

55
Cargo.lock generated Normal file
View File

@ -0,0 +1,55 @@
# This file is automatically @generated by Cargo.
# It is not intended for manual editing.
version = 4
[[package]]
name = "luaffi"
version = "0.1.0"
[[package]]
name = "luaify"
version = "0.1.0"
dependencies = [
"proc-macro2",
"quote",
"syn",
]
[[package]]
name = "luby"
version = "0.1.0"
[[package]]
name = "proc-macro2"
version = "1.0.95"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "02b3e5e68a3a1a02aad3ec490a98007cbc13c37cbe84a3cd7b8e406d76e7f778"
dependencies = [
"unicode-ident",
]
[[package]]
name = "quote"
version = "1.0.40"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "1885c039570dc00dcb4ff087a89e185fd56bae234ddc7f056a945bf36467248d"
dependencies = [
"proc-macro2",
]
[[package]]
name = "syn"
version = "2.0.103"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "e4307e30089d6fd6aff212f2da3a1f9e32f3223b1f010fb09b7c95f90f3ca1e8"
dependencies = [
"proc-macro2",
"quote",
"unicode-ident",
]
[[package]]
name = "unicode-ident"
version = "1.0.18"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "5a5f39404a5da50712a4c1eecf25e90dd62b613502b7e925fd4e4d19b5c96512"

9
Cargo.toml Normal file
View File

@ -0,0 +1,9 @@
[workspace]
members = ["crates/luaffi", "crates/luaify"]
[package]
name = "luby"
version = "0.1.0"
edition = "2024"
[dependencies]

6
crates/luaffi/Cargo.toml Normal file
View File

@ -0,0 +1,6 @@
[package]
name = "luaffi"
version = "0.1.0"
edition = "2024"
[dependencies]

14
crates/luaffi/src/lib.rs Normal file
View File

@ -0,0 +1,14 @@
pub fn add(left: u64, right: u64) -> u64 {
left + right
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn it_works() {
let result = add(2, 2);
assert_eq!(result, 4);
}
}

12
crates/luaify/Cargo.toml Normal file
View File

@ -0,0 +1,12 @@
[package]
name = "luaify"
version = "0.1.0"
edition = "2024"
[lib]
proc-macro = true
[dependencies]
proc-macro2 = "1.0.95"
quote = "1.0.40"
syn = { version = "2.0.103", features = ["full", "visit-mut"] }

View File

@ -0,0 +1,861 @@
use crate::utils::{syn_assert, syn_error, wrap_expr_block};
use std::fmt::Display;
use syn::{ext::*, punctuated::*, spanned::*, *};
pub fn generate(expr: &Expr) -> Result<String> {
let mut f = Formatter::default();
generate_expr(&mut f, expr, Context::expr(true))?;
f.done()
}
#[derive(Debug, Default)]
struct Formatter {
buf: String,
space: bool,
}
impl Formatter {
fn write(&mut self, s: impl Display) -> &mut Self {
fn sep(c: char) -> bool {
match c {
'(' | ')' | '[' | ']' | '+' | '-' | '*' | '/' | '%' | '^' | '#' | '=' | '~'
| '<' | '>' | ':' | ';' | '.' | ',' | '\'' | '"' | ' ' => true,
_ => false,
}
}
let s = format!("{s}");
if !s.is_empty() {
if self.space && !sep(s.chars().next().unwrap()) {
self.buf.push(' ');
}
self.buf.push_str(&s);
self.space = !sep(s.chars().last().unwrap());
}
self
}
fn done(self) -> Result<String> {
Ok(self.buf)
}
}
macro_rules! assert_no_attrs {
($src:expr) => {{ syn_assert!($src.attrs.is_empty(), $src, "unsupported attribute") }};
}
macro_rules! assert_no_suffix {
($src:expr) => {{ syn_assert!($src.suffix() == "", $src, "cannot have suffix") }};
}
#[derive(Debug, Clone, Copy)]
enum Context {
Stmt { ret: bool },
Expr { multi: bool },
}
impl Context {
fn stmt(ret: bool) -> Self {
Self::Stmt { ret }
}
fn expr(multi: bool) -> Self {
Self::Expr { multi }
}
fn is_stmt(&self) -> bool {
matches!(self, Self::Stmt { .. })
}
fn is_ret(&self) -> bool {
matches!(self, Self::Stmt { ret: true, .. })
}
fn is_expr(&self) -> bool {
matches!(self, Self::Expr { .. })
}
fn is_multi_expr(&self) -> bool {
matches!(self, Self::Expr { multi: true, .. })
}
fn is_value(&self) -> bool {
self.is_expr() | self.is_ret()
}
}
fn generate_expr(f: &mut Formatter, expr: &Expr, cx: Context) -> Result<()> {
match expr {
Expr::Assign(ass) => generate_expr_assign(f, ass, cx),
Expr::Binary(bin) => generate_expr_binary(f, bin, cx),
Expr::Block(block) => generate_expr_block(f, block, cx),
Expr::Break(brk) => generate_expr_break(f, brk, cx),
Expr::Call(call) => generate_expr_call(f, call, cx),
Expr::Closure(clo) => generate_expr_closure(f, clo, cx),
Expr::Continue(cont) => generate_expr_continue(f, cont, cx),
Expr::Field(field) => generate_expr_field(f, field, cx),
Expr::ForLoop(fo) => generate_expr_forloop(f, fo, cx),
Expr::If(xif) => generate_expr_if(f, xif, cx),
Expr::Index(index) => generate_expr_index(f, index, cx),
Expr::Infer(infer) => generate_expr_infer(f, infer, cx),
Expr::Lit(lit) => generate_expr_lit(f, lit, cx),
Expr::Loop(lo) => generate_expr_loop(f, lo, cx),
Expr::Macro(mac) => generate_expr_macro(f, mac, cx),
Expr::MethodCall(call) => generate_expr_method_call(f, call, cx),
Expr::Paren(paren) => generate_expr_paren(f, paren, cx),
Expr::Path(path) => generate_expr_path(f, path, cx),
Expr::Return(ret) => generate_expr_return(f, ret, cx),
Expr::Tuple(tuple) => generate_expr_tuple(f, tuple, cx),
Expr::Unary(un) => generate_expr_unary(f, un, cx),
Expr::While(whil) => generate_expr_while(f, whil, cx),
expr => syn_error!(expr, "unsupported expression"),
}
}
fn generate_expr_assign(f: &mut Formatter, ass: &ExprAssign, cx: Context) -> Result<()> {
assert_no_attrs!(ass);
syn_assert!(
cx.is_stmt(),
ass,
"assignment must be in statement position"
);
generate_expr(f, &ass.left, Context::expr(false))?;
f.write("=");
generate_expr(f, &ass.right, Context::expr(true))?;
Ok(())
}
fn generate_expr_binary(f: &mut Formatter, bin: &ExprBinary, cx: Context) -> Result<()> {
assert_no_attrs!(bin);
match bin.op {
BinOp::Add(_)
| BinOp::Sub(_)
| BinOp::Mul(_)
| BinOp::Div(_)
| BinOp::Rem(_)
| BinOp::BitAnd(_)
| BinOp::BitOr(_)
| BinOp::BitXor(_)
| BinOp::Shl(_)
| BinOp::Shr(_)
| BinOp::Eq(_)
| BinOp::Lt(_)
| BinOp::Le(_)
| BinOp::Ne(_)
| BinOp::Ge(_)
| BinOp::Gt(_)
| BinOp::And(_)
| BinOp::Or(_) => {
syn_assert!(cx.is_value(), bin, "must be in expression position");
cx.is_ret().then(|| f.write("return"));
}
BinOp::AddAssign(_)
| BinOp::SubAssign(_)
| BinOp::MulAssign(_)
| BinOp::DivAssign(_)
| BinOp::RemAssign(_)
| BinOp::BitXorAssign(_)
| BinOp::BitAndAssign(_)
| BinOp::BitOrAssign(_)
| BinOp::ShlAssign(_)
| BinOp::ShrAssign(_) => {
syn_assert!(cx.is_stmt(), bin, "must be in statement position");
}
op => syn_error!(op, "unsupported binary operator"),
}
let cx = Context::expr(false);
macro_rules! bin_op {
($op:expr) => {{
generate_expr(f, &bin.left, cx)?;
f.write($op);
generate_expr(f, &bin.right, cx)?;
}};
}
macro_rules! call_op {
($name:expr) => {{
f.write(format_args!("{}(", $name));
generate_expr(f, &bin.left, cx)?;
f.write(",");
generate_expr(f, &bin.right, cx)?;
f.write(")");
}};
}
macro_rules! assign_bin_op {
($op:expr) => {{
generate_expr(f, &bin.left, cx)?;
f.write("=");
bin_op!($op);
}};
}
macro_rules! assign_call_op {
($name:expr) => {{
generate_expr(f, &bin.left, cx)?;
f.write("=");
call_op!($name);
}};
}
match bin.op {
BinOp::Add(_) => bin_op!("+"),
BinOp::AddAssign(_) => assign_bin_op!("+"),
BinOp::Sub(_) => bin_op!("-"),
BinOp::SubAssign(_) => assign_bin_op!("-"),
BinOp::Mul(_) => bin_op!("*"),
BinOp::MulAssign(_) => assign_bin_op!("*"),
BinOp::Div(_) => bin_op!("/"),
BinOp::DivAssign(_) => assign_bin_op!("/"),
BinOp::Rem(_) => call_op!("math.fmod"),
BinOp::RemAssign(_) => assign_call_op!("math.fmod"),
BinOp::BitAnd(_) => call_op!("bit.band"),
BinOp::BitAndAssign(_) => assign_call_op!("bit.band"),
BinOp::BitOr(_) => call_op!("bit.bor"),
BinOp::BitOrAssign(_) => assign_call_op!("bit.bor"),
BinOp::BitXor(_) => call_op!("bit.bxor"),
BinOp::BitXorAssign(_) => assign_call_op!("bit.bxor"),
BinOp::Shl(_) => call_op!("bit.lshift"),
BinOp::ShlAssign(_) => assign_call_op!("bit.lshift"),
BinOp::Shr(_) => call_op!("bit.arshift"),
BinOp::ShrAssign(_) => assign_call_op!("bit.arshift"),
BinOp::Eq(_) => bin_op!("=="),
BinOp::Lt(_) => bin_op!("<"),
BinOp::Le(_) => bin_op!("<="),
BinOp::Ne(_) => bin_op!("~="),
BinOp::Ge(_) => bin_op!(">="),
BinOp::Gt(_) => bin_op!(">"),
BinOp::And(_) => bin_op!("and"),
BinOp::Or(_) => bin_op!("or"),
op => syn_error!(op, "unsupported binary operator"),
};
Ok(())
}
fn generate_expr_block(f: &mut Formatter, block: &ExprBlock, cx: Context) -> Result<()> {
assert_no_attrs!(block);
syn_assert!(cx.is_stmt(), block, "block must be in statement position");
f.write("do");
generate_block_body(f, &block.block, cx)?;
if let Some(ref label) = block.label {
generate_label_continue(f, label)?;
}
f.write("end");
if let Some(ref label) = block.label {
generate_label_break(f, label)?;
}
Ok(())
}
fn generate_expr_break(f: &mut Formatter, brk: &ExprBreak, cx: Context) -> Result<()> {
assert_no_attrs!(brk);
syn_assert!(cx.is_stmt(), brk, "break must be in statement position");
syn_assert!(brk.expr.is_none(), brk, "use return instead");
match brk.label {
Some(ref label) => f.write(format_args!("goto {}_brk", label.ident.unraw())),
None => f.write("break"),
};
Ok(())
}
fn generate_expr_call(f: &mut Formatter, call: &ExprCall, cx: Context) -> Result<()> {
assert_no_attrs!(call);
cx.is_ret().then(|| f.write("return"));
generate_expr(f, &call.func, Context::expr(false))?;
f.write("(");
generate_punctuated_expr(f, &call.args)?;
f.write(")");
Ok(())
}
fn generate_expr_closure(f: &mut Formatter, clo: &ExprClosure, cx: Context) -> Result<()> {
assert_no_attrs!(clo);
syn_assert!(cx.is_value(), clo, "closure must be in expression position");
if let Some(ref bounds) = clo.lifetimes {
syn_error!(bounds, "cannot have lifetime bindings");
} else if let Some(ref stat) = clo.movability {
syn_error!(stat, "cannot be static");
} else if let Some(ref cons) = clo.constness {
syn_error!(cons, "cannot be const");
} else if let Some(ref asyn) = clo.asyncness {
syn_error!(asyn, "cannot be async");
} else if let Some(ref capt) = clo.capture {
syn_error!(capt, "cannot be move");
} else if let ReturnType::Type(_, ref ty) = clo.output {
syn_error!(ty, "cannot have return type");
}
cx.is_ret().then(|| f.write("return"));
f.write("function(");
generate_punctuated_pat(f, &clo.inputs)?;
f.write(")");
generate_block_body(f, &wrap_expr_block(&clo.body), Context::stmt(true))?;
f.write("end");
Ok(())
}
fn generate_expr_continue(f: &mut Formatter, cont: &ExprContinue, cx: Context) -> Result<()> {
assert_no_attrs!(cont);
syn_assert!(cx.is_stmt(), cont, "continue must be in statement position");
match cont.label {
Some(ref label) => f.write(format_args!("goto {}_cnt", label.ident.unraw())),
None => syn_error!(cont, "continue requires a label"),
};
Ok(())
}
fn generate_expr_field(f: &mut Formatter, field: &ExprField, cx: Context) -> Result<()> {
assert_no_attrs!(field);
syn_assert!(cx.is_value(), field, "must be in expression position");
cx.is_ret().then(|| f.write("return"));
generate_expr(f, &field.base, Context::expr(false))?;
match field.member {
Member::Named(ref ident) => {
f.write(".");
generate_ident(f, ident)?;
}
Member::Unnamed(ref index) => {
f.write("[");
generate_index(f, index)?;
f.write("]");
}
}
Ok(())
}
fn generate_expr_forloop(f: &mut Formatter, fo: &ExprForLoop, cx: Context) -> Result<()> {
assert_no_attrs!(fo);
syn_assert!(cx.is_stmt(), fo, "for loop must be in statement position");
f.write("for");
match *fo.expr {
Expr::Range(ref range) => {
assert_no_attrs!(range);
// TODO: reverse ranges
let start = match range.start {
Some(ref start) => (**start).clone(),
None => parse_quote!(0),
};
let end = match range.end {
Some(ref end) => match range.limits {
RangeLimits::HalfOpen(_) => parse_quote!(#end - 1),
RangeLimits::Closed(_) => (**end).clone(),
},
None => syn_error!(range, "end of range must be specified"),
};
generate_pat(f, &fo.pat, PatContext::Single)?;
f.write("=");
generate_expr(f, &start, Context::expr(false))?;
f.write(",");
generate_expr(f, &end, Context::expr(false))?;
}
ref expr => {
generate_pat(f, &fo.pat, PatContext::Multi)?;
f.write("in");
generate_expr(f, expr, Context::expr(true))?;
}
}
f.write("do");
generate_block_body(f, &fo.body, Context::stmt(false))?;
if let Some(ref label) = fo.label {
generate_label_continue(f, label)?;
}
f.write("end");
if let Some(ref label) = fo.label {
generate_label_break(f, label)?;
}
Ok(())
}
fn generate_expr_if(f: &mut Formatter, mut xif: &ExprIf, cx: Context) -> Result<()> {
assert_no_attrs!(xif);
syn_assert!(cx.is_stmt(), xif, "if must be in statement position");
f.write("if");
loop {
generate_expr(f, &xif.cond, Context::expr(false))?;
f.write("then");
generate_block_body(f, &xif.then_branch, cx)?;
if let Some((_, ref expr)) = xif.else_branch {
match **expr {
Expr::If(ref elseif) => {
f.write("elseif");
xif = elseif;
continue;
}
ref els => {
f.write("else");
generate_block_body(f, &wrap_expr_block(els), cx)?;
}
}
}
break;
}
f.write("end");
Ok(())
}
fn generate_expr_index(f: &mut Formatter, index: &ExprIndex, cx: Context) -> Result<()> {
assert_no_attrs!(index);
syn_assert!(cx.is_value(), index, "must be in expression position");
cx.is_ret().then(|| f.write("return"));
generate_expr(f, &index.expr, Context::expr(false))?;
f.write("[");
generate_expr(f, &index.index, Context::expr(false))?;
f.write("]");
Ok(())
}
fn generate_expr_infer(f: &mut Formatter, infer: &ExprInfer, cx: Context) -> Result<()> {
assert_no_attrs!(infer);
syn_assert!(cx.is_value(), infer, "must be in expression position");
cx.is_ret().then(|| f.write("return"));
f.write("_");
Ok(())
}
fn generate_expr_lit(f: &mut Formatter, lit: &ExprLit, cx: Context) -> Result<()> {
assert_no_attrs!(lit);
syn_assert!(cx.is_value(), lit, "literal must be in expression position");
cx.is_ret().then(|| f.write("return"));
generate_lit(f, &lit.lit)
}
fn generate_expr_loop(f: &mut Formatter, lo: &ExprLoop, cx: Context) -> Result<()> {
assert_no_attrs!(lo);
syn_assert!(cx.is_stmt(), lo, "loop must be in statement position");
f.write("while true do");
generate_block_body(f, &lo.body, Context::stmt(false))?;
if let Some(ref label) = lo.label {
generate_label_continue(f, label)?;
}
f.write("end");
if let Some(ref label) = lo.label {
generate_label_break(f, label)?;
}
Ok(())
}
fn generate_expr_macro(f: &mut Formatter, mac: &ExprMacro, cx: Context) -> Result<()> {
assert_no_attrs!(mac);
generate_macro(f, &mac.mac, cx)
}
fn generate_expr_method_call(f: &mut Formatter, call: &ExprMethodCall, cx: Context) -> Result<()> {
assert_no_attrs!(call);
if let Some(ref fish) = call.turbofish {
syn_error!(fish, "cannot be generic");
}
cx.is_ret().then(|| f.write("return"));
generate_expr(f, &call.receiver, Context::expr(false))?;
f.write(":");
generate_ident(f, &call.method)?;
f.write("(");
generate_punctuated_expr(f, &call.args)?;
f.write(")");
Ok(())
}
fn generate_expr_paren(f: &mut Formatter, paren: &ExprParen, cx: Context) -> Result<()> {
assert_no_attrs!(paren);
syn_assert!(cx.is_value(), paren, "must be in expression position");
cx.is_ret().then(|| f.write("return"));
f.write("(");
generate_expr(f, &paren.expr, Context::expr(false))?;
f.write(")");
Ok(())
}
fn generate_expr_path(f: &mut Formatter, path: &ExprPath, cx: Context) -> Result<()> {
assert_no_attrs!(path);
syn_assert!(cx.is_value(), path, "must be in expression position");
cx.is_ret().then(|| f.write("return"));
match path.qself {
Some(ref qself) => syn_error!(qself, "cannot be generic"),
None => generate_path(f, &path.path),
}
}
fn generate_expr_return(f: &mut Formatter, ret: &ExprReturn, cx: Context) -> Result<()> {
assert_no_attrs!(ret);
syn_assert!(cx.is_stmt(), ret, "return must be in statement position");
f.write("return");
match ret.expr {
Some(ref value) => generate_expr(f, value, Context::expr(true)),
None => Ok(()),
}
}
fn generate_expr_tuple(f: &mut Formatter, tuple: &ExprTuple, cx: Context) -> Result<()> {
assert_no_attrs!(tuple);
syn_assert!(cx.is_value(), tuple, "tuple must be in expression position");
cx.is_ret().then(|| f.write("return"));
match tuple.elems.len() {
0 => {
f.write("nil");
Ok(())
}
_ if cx.is_multi_expr() => generate_punctuated_expr(f, &tuple.elems),
_ => syn_error!(tuple, "expected single-valued expression"),
}
}
fn generate_expr_unary(f: &mut Formatter, un: &ExprUnary, cx: Context) -> Result<()> {
assert_no_attrs!(un);
syn_assert!(cx.is_value(), un, "must be in expression position");
cx.is_ret().then(|| f.write("return"));
let cx = Context::expr(false);
macro_rules! un_op {
($op:expr) => {{
f.write($op);
generate_expr(f, &un.expr, cx)?;
}};
}
match un.op {
UnOp::Not(_) => un_op!("not"),
UnOp::Neg(_) => un_op!("-"),
op => syn_error!(op, "unsupported unary operator"),
}
Ok(())
}
fn generate_expr_while(f: &mut Formatter, whil: &ExprWhile, cx: Context) -> Result<()> {
assert_no_attrs!(whil);
syn_assert!(cx.is_stmt(), whil, "while must be in statement position");
f.write("while");
generate_expr(f, &whil.cond, Context::expr(false))?;
f.write("do");
generate_block_body(f, &whil.body, Context::stmt(false))?;
if let Some(ref label) = whil.label {
generate_label_continue(f, label)?;
}
f.write("end");
if let Some(ref label) = whil.label {
generate_label_break(f, label)?;
}
Ok(())
}
fn generate_punctuated_expr(f: &mut Formatter, exprs: &Punctuated<Expr, Token![,]>) -> Result<()> {
for (i, expr) in exprs.iter().enumerate() {
(i != 0).then(|| f.write(","));
generate_expr(f, expr, Context::expr(false))?;
}
Ok(())
}
fn generate_ident(f: &mut Formatter, ident: &Ident) -> Result<()> {
// https://www.lua.org/manual/5.2/manual.html#3.1
let name = format!("{}", ident.unraw());
match name.as_str() {
"and" | "break" | "do" | "else" | "elseif" | "end" | "false" | "for" | "function"
| "goto" | "if" | "in" | "local" | "nil" | "not" | "or" | "repeat" | "return" | "then"
| "true" | "until" | "while" => {
syn_error!(ident, "'{name}' cannot be used as an identifier")
}
s => f.write(s),
};
Ok(())
}
fn generate_index(f: &mut Formatter, index: &Index) -> Result<()> {
f.write(index.index);
Ok(())
}
fn generate_label_continue(f: &mut Formatter, label: &Label) -> Result<()> {
f.write(format_args!("::{}_cnt::", label.name.ident.unraw()));
Ok(())
}
fn generate_label_break(f: &mut Formatter, label: &Label) -> Result<()> {
f.write(format_args!("::{}_brk::", label.name.ident.unraw()));
Ok(())
}
fn generate_lit(f: &mut Formatter, lit: &Lit) -> Result<()> {
match lit {
Lit::Bool(b) => generate_lit_bool(f, b),
Lit::Byte(b) => generate_lit_byte(f, b),
Lit::Int(n) => generate_lit_int(f, n),
Lit::Float(n) => generate_lit_float(f, n),
Lit::Str(s) => generate_lit_str(f, s),
Lit::ByteStr(s) => generate_lit_byte_str(f, s),
Lit::CStr(s) => generate_lit_cstr(f, s),
lit => syn_error!(lit, "unsupported literal"),
}
}
fn generate_lit_bool(f: &mut Formatter, b: &LitBool) -> Result<()> {
f.write(b.value());
Ok(())
}
fn generate_lit_byte(f: &mut Formatter, b: &LitByte) -> Result<()> {
assert_no_suffix!(b);
f.write(b.value());
Ok(())
}
fn generate_lit_int(f: &mut Formatter, n: &LitInt) -> Result<()> {
assert_no_suffix!(n);
f.write(n.base10_parse::<f64>()?);
Ok(())
}
fn generate_lit_float(f: &mut Formatter, n: &LitFloat) -> Result<()> {
assert_no_suffix!(n);
f.write(n.base10_parse::<f64>()?);
Ok(())
}
fn generate_lit_str(f: &mut Formatter, s: &LitStr) -> Result<()> {
assert_no_suffix!(s);
f.write(format!(r#""{}""#, escape_str(s.value())));
Ok(())
}
fn generate_lit_byte_str(f: &mut Formatter, s: &LitByteStr) -> Result<()> {
assert_no_suffix!(s);
f.write(format!(r#""{}""#, escape_str(s.value())));
Ok(())
}
fn generate_lit_cstr(f: &mut Formatter, s: &LitCStr) -> Result<()> {
assert_no_suffix!(s);
f.write(format!(r#""{}\0""#, escape_str(s.value().as_bytes())));
Ok(())
}
fn escape_str(s: impl AsRef<[u8]>) -> String {
// this produces an escaped string with \xNN hexadecimal notation which lua 5.1 normally
// wouldn't understand, but luajit supports this unconditionally as an extension
// https://docs.rs/bstr/latest/bstr/trait.ByteSlice.html#method.escape_bytes
// https://luajit.org/extensions.html#lua52
String::from_utf8(
s.as_ref()
.iter()
.flat_map(|b| std::ascii::escape_default(*b))
.collect(),
)
.unwrap()
}
fn generate_path(f: &mut Formatter, path: &Path) -> Result<()> {
for (i, segment) in path.segments.iter().enumerate() {
(i != 0).then(|| f.write("."));
generate_path_segment(f, segment)?;
}
Ok(())
}
fn generate_path_segment(f: &mut Formatter, seg: &PathSegment) -> Result<()> {
match seg.arguments {
PathArguments::AngleBracketed(ref arg) => syn_error!(arg, "cannot be generic"),
PathArguments::Parenthesized(ref arg) => syn_error!(arg, "cannot be generic"),
PathArguments::None => generate_ident(f, &seg.ident),
}
}
fn generate_block_body(f: &mut Formatter, block: &Block, cx: Context) -> Result<()> {
let len = block.stmts.len();
for (i, stmt) in block.stmts.iter().enumerate() {
match stmt {
Stmt::Local(local) => generate_local(f, local),
Stmt::Item(item) => generate_item(f, item),
Stmt::Expr(expr, semi) => match semi {
None if i == len - 1 && cx.is_ret() => generate_expr(f, expr, Context::stmt(true)),
_ => generate_expr(f, expr, Context::stmt(false)),
},
Stmt::Macro(smac) => generate_macro(f, &smac.mac, cx),
}?;
f.write(";");
}
Ok(())
}
fn generate_local(f: &mut Formatter, local: &Local) -> Result<()> {
assert_no_attrs!(local);
f.write("local");
generate_pat(f, &local.pat, PatContext::Multi)?;
match local.init {
Some(ref init) => generate_local_init(f, init),
None => Ok(()),
}
}
fn generate_local_init(f: &mut Formatter, init: &LocalInit) -> Result<()> {
match init.diverge {
Some((ref token, _)) => syn_error!(token, "let-else is not supported"),
None => {
f.write("=");
generate_expr(f, &init.expr, Context::expr(true))
}
}
}
fn generate_item(f: &mut Formatter, item: &Item) -> Result<()> {
match item {
Item::Fn(func) => generate_item_fn(f, func),
item => syn_error!(item, "unsupported item"),
}
}
fn generate_item_fn(f: &mut Formatter, func: &ItemFn) -> Result<()> {
assert_no_attrs!(func);
let Visibility::Inherited = func.vis else {
syn_error!(func, "cannot have visibility");
};
f.write("local");
generate_signature(f, &func.sig)?;
generate_block_body(f, &func.block, Context::stmt(true))?;
f.write("end");
Ok(())
}
fn generate_signature(f: &mut Formatter, sig: &Signature) -> Result<()> {
if let Some(ref cons) = sig.constness {
syn_error!(cons, "cannot be const");
} else if let Some(ref asyn) = sig.asyncness {
syn_error!(asyn, "cannot be async");
} else if let Some(ref uns) = sig.unsafety {
syn_error!(uns, "cannot be unsafe");
} else if let Some(ref abi) = sig.abi {
syn_error!(abi, "cannot be extern");
} else if !sig.generics.params.is_empty() {
syn_error!(sig.generics.params, "cannot be generic");
} else if let Some(ref wher) = sig.generics.where_clause {
syn_error!(wher, "cannot have where clause");
} else if let ReturnType::Type(_, ref ty) = sig.output {
syn_error!(ty, "cannot have return type");
}
f.write("function");
generate_ident(f, &sig.ident)?;
f.write("(");
for (i, param) in sig.inputs.iter().enumerate() {
(i != 0).then(|| f.write(","));
generate_fn_arg(f, param)?;
}
f.write(")");
Ok(())
}
fn generate_fn_arg(f: &mut Formatter, param: &FnArg) -> Result<()> {
match param {
FnArg::Receiver(recv) => generate_receiver(f, recv),
FnArg::Typed(typed) => generate_pat_typed(f, typed, PatContext::Single),
}
}
fn generate_receiver(f: &mut Formatter, recv: &Receiver) -> Result<()> {
assert_no_attrs!(recv);
syn_assert!(recv.colon_token.is_none(), recv, "must be `self`");
if let Some(ref l) = recv.lifetime() {
syn_error!(l, "cannot have lifetimes");
} else if let Some(ref m) = recv.mutability {
syn_error!(m, "cannot be mut (implicitly mutable)");
}
f.write("self");
Ok(())
}
fn generate_macro(f: &mut Formatter, mac: &Macro, cx: Context) -> Result<()> {
match format!("{}", mac.path.require_ident()?).as_str() {
"concat" => generate_macro_concat(f, mac, cx),
name => syn_error!(mac.path, "unknown macro '{name}'"),
}
}
fn generate_macro_concat(f: &mut Formatter, mac: &Macro, cx: Context) -> Result<()> {
syn_assert!(cx.is_value(), mac, "must be in expression position");
cx.is_ret().then(|| f.write("return"));
let args = mac.parse_body_with(<Punctuated<Expr, Token![,]>>::parse_terminated)?;
if args.is_empty() {
syn_error!(mac.path, "expected at least one argument")
}
for (i, arg) in args.iter().enumerate() {
(i != 0).then(|| f.write(".."));
generate_expr(f, arg, Context::expr(false))?;
}
Ok(())
}
#[derive(Debug, Clone, Copy)]
enum PatContext {
Single,
Multi,
}
impl PatContext {
fn _is_single(&self) -> bool {
matches!(self, Self::Single)
}
fn is_multi(&self) -> bool {
matches!(self, Self::Multi)
}
}
fn generate_pat(f: &mut Formatter, pat: &Pat, cx: PatContext) -> Result<()> {
match pat {
Pat::Ident(ident) => generate_pat_ident(f, ident, cx),
Pat::Tuple(tuple) => generate_pat_tuple(f, tuple, cx),
Pat::Type(typed) => generate_pat_typed(f, typed, cx),
Pat::Wild(wild) => generate_pat_wild(f, wild, cx),
pat => syn_error!(pat, "unsupported pattern"),
}
}
fn generate_pat_ident(f: &mut Formatter, ident: &PatIdent, _cx: PatContext) -> Result<()> {
assert_no_attrs!(ident);
if let Some(ref r) = ident.by_ref {
syn_error!(r, "cannot be ref");
} else if let Some(ref m) = ident.mutability {
syn_error!(m, "cannot be mut (implicitly mutable)");
} else if let Some((_, ref pat)) = ident.subpat {
syn_error!(pat, "subpatterns are not supported");
}
generate_ident(f, &ident.ident)
}
fn generate_pat_tuple(f: &mut Formatter, tuple: &PatTuple, cx: PatContext) -> Result<()> {
assert_no_attrs!(tuple);
match tuple.elems.len() {
0 => syn_error!(tuple, "must have at least one element"),
_ if cx.is_multi() => generate_punctuated_pat(f, &tuple.elems),
_ => syn_error!(tuple, "expected single-valued pattern"),
}
}
fn generate_pat_typed(f: &mut Formatter, typed: &PatType, cx: PatContext) -> Result<()> {
assert_no_attrs!(typed);
match *typed.ty {
Type::Infer(_) => generate_pat(f, &typed.pat, cx),
ref ty => syn_error!(ty, "cannot have type"),
}
}
fn generate_pat_wild(f: &mut Formatter, wild: &PatWild, _cx: PatContext) -> Result<()> {
assert_no_attrs!(wild);
f.write("_");
Ok(())
}
fn generate_punctuated_pat(f: &mut Formatter, pats: &Punctuated<Pat, Token![,]>) -> Result<()> {
for (i, pat) in pats.iter().enumerate() {
(i != 0).then(|| f.write(","));
generate_pat(f, pat, PatContext::Single)?;
}
Ok(())
}

36
crates/luaify/src/lib.rs Normal file
View File

@ -0,0 +1,36 @@
use crate::{generate::generate, transform::transform};
use proc_macro::TokenStream as TokenStream1;
use quote::{ToTokens, quote};
use syn::parse_macro_input;
mod generate;
mod transform;
mod utils;
#[proc_macro]
pub fn luaify(input: TokenStream1) -> TokenStream1 {
let mut expr = parse_macro_input!(input);
match transform(&mut expr).and_then(|()| generate(&expr)) {
Ok(s) => quote!(#s).into_token_stream(),
Err(err) => err.into_compile_error().into_token_stream(),
}
.into()
}
// #[derive(Debug)]
// struct TypeChecker {
// checks: Vec<(Ident, LuaType)>,
// }
// impl TypeChecker {
// fn generate(&self, f: &mut Formatter) -> syn::Result<()> {
// for (ident, ty) in self.checks.iter() {
// generate_type_check(f, ident, *ty)?;
// }
// Ok(())
// }
// }
// fn generate_type_check(f: &mut Formatter, ident: &Ident, ty: LuaType) -> syn::Result<()> {
// Ok(())
// }

View File

@ -0,0 +1,231 @@
use std::mem;
use crate::utils::{LuaType, syn_error, unwrap_expr_ident, unwrap_pat_ident, wrap_expr_block};
use syn::{spanned::*, visit_mut::*, *};
pub fn transform(expr: &mut Expr) -> Result<()> {
let mut visitor = Visitor::new();
visitor.visit_expr_mut(expr);
visitor.result
}
#[derive(Debug)]
struct Visitor {
result: Result<()>,
}
impl Visitor {
fn new() -> Self {
Self { result: Ok(()) }
}
}
impl VisitMut for Visitor {
fn visit_expr_closure_mut(&mut self, clo: &mut ExprClosure) {
match self.transform_expr_closure(clo) {
res @ Err(_) => self.result = res,
_ => visit_expr_closure_mut(self, clo),
}
}
fn visit_item_fn_mut(&mut self, func: &mut ItemFn) {
match self.transform_function(func) {
res @ Err(_) => self.result = res,
_ => visit_item_fn_mut(self, func),
}
}
fn visit_expr_mut(&mut self, expr: &mut Expr) {
match self.transform_expr(expr) {
res @ Err(_) => self.result = res,
_ => visit_expr_mut(self, expr),
}
}
fn visit_expr_unary_mut(&mut self, un: &mut ExprUnary) {
match self.transform_unary(un) {
res @ Err(_) => self.result = res,
_ => visit_expr_unary_mut(self, un),
}
}
fn visit_expr_match_mut(&mut self, mat: &mut ExprMatch) {
match self.transform_match(mat) {
res @ Err(_) => self.result = res,
_ => visit_expr_match_mut(self, mat),
}
}
}
impl Visitor {
fn transform_expr_closure(&mut self, clo: &mut ExprClosure) -> Result<()> {
//
// transforms a closure expression with input type annotations by removing the annotations
// and inserting `as` casts at the start.
//
// before:
// |a: string, b: number| { ... }
// after:
// |a, b| { a as string; b as number; ... }
//
let mut checks: Vec<Stmt> = vec![];
for input in clo.inputs.iter_mut() {
match input {
Pat::Ident(_) => {}
Pat::Type(typed) => {
let ident = unwrap_pat_ident(&typed.pat)?;
let ty = mem::replace(&mut typed.ty, parse_quote!(_));
match (&*ty).try_into()? {
LuaType::Any => {}
_ => checks.push(parse_quote! { #ident as #ty; }),
}
}
_ => {}
}
}
if !checks.is_empty() {
let mut body = wrap_expr_block(&clo.body);
body.stmts.splice(..0, checks);
clo.body = Box::new(parse_quote! { #body });
}
Ok(())
}
fn transform_function(&mut self, func: &mut ItemFn) -> Result<()> {
//
// transforms a function item with input type annotations by removing the annotations
// and inserting `as` casts at the start.
//
// before:
// fn my_func(self: table, a: string) { ... }
// after:
// fn my_func(self: _, a: _) { self as table; a as string; ... }
//
let mut checks: Vec<Stmt> = vec![];
for input in func.sig.inputs.iter_mut() {
if let Some((ident, ty)) = match input {
FnArg::Receiver(recv) if recv.colon_token.is_some() => {
let ty = mem::replace(&mut recv.ty, parse_quote!(_));
recv.colon_token = None;
Some((Ident::new("self", recv.self_token.span()), ty))
}
FnArg::Typed(typed) => {
let ident = unwrap_pat_ident(&typed.pat)?;
let ty = mem::replace(&mut typed.ty, parse_quote!(_));
Some((ident, ty))
}
_ => None,
} {
match (&*ty).try_into()? {
LuaType::Any => {}
_ => checks.push(parse_quote! { #ident as #ty; }),
}
};
}
func.block.stmts.splice(..0, checks);
Ok(())
}
fn transform_expr(&mut self, expr: &mut Expr) -> Result<()> {
self.transform_expr_cast(expr)?;
Ok(())
}
fn transform_expr_cast(&mut self, expr: &mut Expr) -> Result<()> {
//
// transforms an `as` cast expression into a block expression containing a runtime
// lua type check.
//
// before:
// var as string
// after:
// { if type(var) != "string" { error(...) } }
//
if let Expr::Cast(cast) = expr {
let arg = (*cast.expr).clone();
let mut init: Option<Stmt> = None;
let ty: LuaType = (&*cast.ty).try_into()?;
let ty_str = format!("{ty}");
let (ident, msg) = match unwrap_expr_ident(&arg).ok() {
Some(ident) => (ident.clone(), format!("{ty} expected in '{ident}', got ")),
None => {
let ident = Ident::new("_", arg.span());
init = Some(parse_quote! { let #ident = #arg; });
(ident, format!("{ty} expected, got "))
}
};
let tmp = Ident::new(&format!("_{ident}"), ident.span());
let span = cast.span();
*expr = match ty {
LuaType::Any => parse_quote_spanned!(span => {}),
LuaType::Nil => parse_quote_spanned!(span => {
#init
if #ident != () {
return error(concat!(#msg, r#type(#ident)));
}
}),
LuaType::Number => parse_quote_spanned!(span => {
#init
let #tmp = #ident;
#ident = tonumber(#ident);
if #ident == () {
return error(concat!(#msg, r#type(#tmp)));
}
}),
LuaType::Integer => parse_quote_spanned!(span => {
#init
let #tmp = #ident;
#ident = tonumber(#ident);
if #ident == () || math::floor(#ident) != #ident {
return error(concat!(#msg, r#type(#tmp)));
}
}),
LuaType::String => parse_quote_spanned!(span => {
#init
if r#type(#ident) == "number" {
#ident = tostring(#ident);
} else if r#type(#ident) != "string" {
return error(concat!(#msg, r#type(#ident)));
}
}),
_ => parse_quote_spanned!(span => {
#init
if r#type(#ident) != #ty_str {
return error(concat!(#msg, r#type(#ident)));
}
}),
}
}
Ok(())
}
fn transform_unary(&mut self, un: &mut ExprUnary) -> Result<()> {
//
// separates a nested negation unary operator with parentheses, because double hyphen
// `--` indicates a comment in lua.
//
// before:
// --a
// after:
// -(-a)
//
if let UnOp::Neg(_) = un.op
&& let Expr::Unary(ref inner) = *un.expr
&& let UnOp::Neg(_) = inner.op
{
un.expr = Box::new(parse_quote!((#inner)));
}
Ok(())
}
fn transform_match(&mut self, mat: &mut ExprMatch) -> Result<()> {
// TODO:
syn_error!(mat, "match-to-if transformation not yet implemented");
}
}

113
crates/luaify/src/utils.rs Normal file
View File

@ -0,0 +1,113 @@
use std::fmt;
use syn::{ext::*, spanned::*, *};
macro_rules! syn_error {
($src:expr, $($fmt:expr),+) => {{
return Err(syn::Error::new($src.span(), format!($($fmt),*)));
}};
}
macro_rules! syn_assert {
($cond:expr, $src:expr, $($fmt:expr),+) => {{
if !$cond {
syn_error!($src, $($fmt),+);
}
}};
}
pub(crate) use {syn_assert, syn_error};
pub fn wrap_expr_block(expr: &Expr) -> Block {
// return the expr if it's a block, otherwise wrap it in a block
match expr {
Expr::Block(block) if block.label.is_none() => block.block.clone(),
expr => parse_quote!({ #expr }),
}
}
pub fn unwrap_expr_ident(expr: &Expr) -> Result<&Ident> {
match expr {
Expr::Path(path) => path.path.require_ident(),
_ => syn_error!(expr, "expected ident"),
}
}
pub fn unwrap_pat_ident(pat: &Pat) -> Result<Ident> {
Ok(match pat {
Pat::Ident(ident) => match ident.subpat {
Some((_, ref subpat)) => syn_error!(subpat, "unexpected subpattern"),
None => ident.ident.clone(),
},
Pat::Wild(wild) => Ident::new("_", wild.span()),
_ => syn_error!(pat, "expected ident"),
})
}
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum LuaType {
Any,
Nil,
Boolean,
Lightuserdata,
Number,
Integer,
String,
Table,
Function,
Userdata,
Thread,
Cdata,
}
impl fmt::Display for LuaType {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self {
LuaType::Any => write!(f, "any"),
LuaType::Nil => write!(f, "nil"),
LuaType::Boolean => write!(f, "boolean"),
LuaType::Lightuserdata => write!(f, "lightuserdata"),
LuaType::Number => write!(f, "number"),
LuaType::Integer => write!(f, "integer"),
LuaType::String => write!(f, "string"),
LuaType::Table => write!(f, "table"),
LuaType::Function => write!(f, "function"),
LuaType::Userdata => write!(f, "userdata"),
LuaType::Thread => write!(f, "thread"),
LuaType::Cdata => write!(f, "cdata"),
}
}
}
impl TryFrom<&Ident> for LuaType {
type Error = Error;
fn try_from(value: &Ident) -> Result<Self> {
Ok(match format!("{}", value.unraw()).as_str() {
"any" => Self::Any,
"nil" => Self::Nil,
"boolean" => Self::Boolean,
"lightuserdata" => Self::Lightuserdata,
"number" => Self::Number,
"integer" => Self::Integer,
"string" => Self::String,
"table" => Self::Table,
"function" => Self::Function,
"userdata" => Self::Userdata,
"thread" => Self::Thread,
"cdata" => Self::Cdata,
_ => syn_error!(value, "invalid lua type"),
})
}
}
impl TryFrom<&Type> for LuaType {
type Error = Error;
fn try_from(value: &Type) -> Result<Self> {
match value {
Type::Infer(_) => Ok(Self::Any),
Type::Path(path) if path.qself.is_none() => path.path.require_ident()?.try_into(),
_ => syn_error!(value, "invalid lua type"),
}
}
}

372
crates/luaify/tests/test.rs Normal file
View File

@ -0,0 +1,372 @@
use luaify::luaify;
#[test]
fn raw_ident() {
assert_eq!(luaify!(r#ref), r#"ref"#);
assert_eq!(luaify!(x.r#ref), r#"x.ref"#);
assert_eq!(luaify!(r#mut::r#ref), r#"mut.ref"#);
assert_eq!(luaify!(x.r#ref()), r#"x:ref()"#);
assert_eq!(luaify!(r#mut.r#ref()), r#"mut:ref()"#);
assert_eq!(luaify!(r#mut::r#ref()), r#"mut.ref()"#);
}
#[test]
fn indexing() {
assert_eq!(luaify!(table.0), r#"table[0]"#);
assert_eq!(luaify!(table[0]), r#"table[0]"#);
assert_eq!(luaify!(table["0"]), r#"table["0"]"#);
assert_eq!(luaify!(table.field), r#"table.field"#);
assert_eq!(luaify!(table.field.nested), r#"table.field.nested"#);
assert_eq!(luaify!(table::field.nested), r#"table.field.nested"#);
assert_eq!(luaify!(table::field::nested), r#"table.field.nested"#);
assert_eq!(luaify!(table::field["nested"]), r#"table.field["nested"]"#);
assert_eq!(luaify!(table.0.nested), r#"table[0].nested"#);
assert_eq!(luaify!(table.0["nested"]), r#"table[0]["nested"]"#);
assert_eq!(luaify!(table[0].nested), r#"table[0].nested"#);
assert_eq!(luaify!(table[0]["nested"]), r#"table[0]["nested"]"#);
assert_eq!(luaify!(table["field"].nested), r#"table["field"].nested"#);
assert_eq!(luaify!(table[field]), r#"table[field]"#);
assert_eq!(luaify!(table[x.y]), r#"table[x.y]"#);
assert_eq!(luaify!(table[x.1.y.2]), r#"table[x[1].y[2]]"#);
assert_eq!(luaify!(table[x.1.y[2]]), r#"table[x[1].y[2]]"#);
assert_eq!(luaify!(table[x[1].y.2]), r#"table[x[1].y[2]]"#);
assert_eq!(luaify!(table[x[1].y[2]]), r#"table[x[1].y[2]]"#);
assert_eq!(luaify!((x.y)[z.w]), r#"(x.y)[z.w]"#);
assert_eq!(luaify!((x[y])[z.w]), r#"(x[y])[z.w]"#);
assert_eq!(luaify!((x["y"])[z.w]), r#"(x["y"])[z.w]"#);
}
#[test]
fn locals() {
assert_eq!(
luaify!(|| {
let x = 30;
}),
r#"function()local x=30;end"#
);
assert_eq!(
luaify!(|| {
let (x, y, z) = (1, 2, 3);
}),
r#"function()local x,y,z=1,2,3;end"#
);
assert_eq!(
luaify!(|| {
let (a, b, c) = (1, call(), call2(), 4);
return (a, b, c);
}),
r#"function()local a,b,c=1,call(),call2(),4;return a,b,c;end"#
);
}
#[test]
fn local_fn() {
assert_eq!(
luaify!(|a, b| {
fn inner(c: _, d: _) {}
inner
}),
r#"function(a,b)local function inner(c,d)end;return inner;end"#
);
assert_eq!(
luaify!(|| {
fn check(self: string, arg: number) {}
inner
}),
r#"function()local function check(self,arg)do if type(self)=="number"then self=tostring(self);elseif type(self)~="string"then return error("string expected in \'self\', got "..type(self));end;end;do local _arg=arg;arg=tonumber(arg);if arg==nil then return error("number expected in \'arg\', got "..type(_arg));end;end;end;return inner;end"#
);
}
#[test]
fn call() {
assert_eq!(luaify!(table.field()), r#"table:field()"#);
assert_eq!(luaify!(table::field()), r#"table.field()"#);
assert_eq!(luaify!(table[field]()), r#"table[field]()"#);
assert_eq!(luaify!(a::b.c.field()), r#"a.b.c:field()"#);
assert_eq!(luaify!(a::b::c.field()), r#"a.b.c:field()"#);
assert_eq!(luaify!(a::b::c::field()), r#"a.b.c.field()"#);
assert_eq!(
luaify!(coroutine::r#yield("string")),
r#"coroutine.yield("string")"#
);
assert_eq!(luaify!(call(a(), (b)(), c.d())), r#"call(a(),(b)(),c:d())"#);
}
#[test]
fn closure() {
assert_eq!(luaify!(|| hello), r#"function()return hello;end"#);
assert_eq!(luaify!(|| { hello }), r#"function()return hello;end"#);
assert_eq!(
luaify!(|| {
return hello;
}),
r#"function()return hello;end"#
);
assert_eq!(
luaify!(|| { { hello } }),
r#"function()do return hello;end;end"#
);
assert_eq!(
luaify!(|a, b| |c, d| hello),
r#"function(a,b)return function(c,d)return hello;end;end"#
);
}
#[test]
fn labels() {
assert_eq!(
luaify!(|| {
'label: {
break 'label;
a();
b()
}
}),
r#"function()do goto label_brk;a();return b();::label_cnt::end::label_brk::;end"#
);
assert_eq!(
luaify!(|| {
'label: {
continue 'label;
a();
b()
}
}),
r#"function()do goto label_cnt;a();return b();::label_cnt::end::label_brk::;end"#
);
}
#[test]
fn loops() {
assert_eq!(
luaify!(|| {
loop {
break;
}
}),
r#"function()while true do break;end;end"#
);
assert_eq!(
luaify!(|| {
'label: loop {
break;
break 'label;
continue 'label;
a();
b()
}
}),
r#"function()while true do break;goto label_brk;goto label_cnt;a();b();::label_cnt::end::label_brk::;end"#
);
assert_eq!(
luaify!(|| { while cond {} }),
r#"function()while cond do end;end"#
);
assert_eq!(
luaify!(|| {
'label: while cond {
continue 'label;
break 'label;
a();
b()
}
}),
r#"function()while cond do goto label_cnt;goto label_brk;a();b();::label_cnt::end::label_brk::;end"#
);
assert_eq!(
luaify!(|| {
for (k, v) in pairs(table) {
print(k, v);
a();
b()
}
}),
r#"function()for k,v in pairs(table)do print(k,v);a();b();end;end"#
);
assert_eq!(
luaify!(|| {
for i in 0..=5 {
print(i)
}
for i in ..10 {
print(i)
}
}),
r#"function()for i=0,5 do print(i);end;for i=0,10-1 do print(i);end;end"#
);
}
#[test]
fn type_checks() {
assert_eq!(luaify!(|s| {}), r#"function(s)end"#);
assert_eq!(
luaify!(|s: table| {}),
r#"function(s)do if type(s)~="table"then return error("table expected in \'s\', got "..type(s));end;end;end"#
);
assert_eq!(
luaify!(|s| { s as string }),
r#"function(s)do if type(s)=="number"then s=tostring(s);elseif type(s)~="string"then return error("string expected in \'s\', got "..type(s));end;end;end"#
);
assert_eq!(
luaify!(|s| { s as number }),
r#"function(s)do local _s=s;s=tonumber(s);if s==nil then return error("number expected in \'s\', got "..type(_s));end;end;end"#
);
assert_eq!(
luaify!(|s| { s as nil }),
r#"function(s)do if s~=nil then return error("nil expected in \'s\', got "..type(s));end;end;end"#
);
assert_eq!(luaify!(|s| { s as any }), r#"function(s)do end;end"#);
assert_eq!(
luaify!(|s| {
let (ok, res) = coroutine::r#yield(thread);
ok as boolean;
res as nil;
}),
r#"function(s)local ok,res=coroutine.yield(thread);do if type(ok)~="boolean"then return error("boolean expected in \'ok\', got "..type(ok));end;end;do if res~=nil then return error("nil expected in \'res\', got "..type(res));end;end;end"#
);
}
#[test]
fn concat() {
assert_eq!(luaify!(concat!(a)), r#"a"#);
assert_eq!(luaify!(concat!(a, b)), r#"a..b"#);
assert_eq!(luaify!(concat!(a, b, c)), r#"a..b..c"#);
assert_eq!(
luaify!(|a, b, c| concat!(a, b, c)),
r#"function(a,b,c)return a..b..c;end"#
);
}
#[test]
fn blocks() {
assert_eq!(
luaify!(|| { { "result" } }),
r#"function()do return"result";end;end"#
);
assert_eq!(
luaify!(|| {
{}
{ "result" }
}),
r#"function()do end;do return"result";end;end"#
);
assert_eq!(
luaify!(|| { { { { "result" } } } }),
r#"function()do do do return"result";end;end;end;end"#
);
}
#[test]
fn ops() {
assert_eq!(luaify!(|| a = b), r#"function()a=b;end"#);
assert_eq!(luaify!(|| a + b), r#"function()return a+b;end"#);
assert_eq!(luaify!(|| a += b), r#"function()a=a+b;end"#);
assert_eq!(luaify!(|| a - b), r#"function()return a-b;end"#);
assert_eq!(luaify!(|| a -= b), r#"function()a=a-b;end"#);
assert_eq!(luaify!(|| a * b), r#"function()return a*b;end"#);
assert_eq!(luaify!(|| a *= b), r#"function()a=a*b;end"#);
assert_eq!(luaify!(|| a / b), r#"function()return a/b;end"#);
assert_eq!(luaify!(|| a /= b), r#"function()a=a/b;end"#);
assert_eq!(luaify!(|| a = b % c), r#"function()a=math.fmod(b,c);end"#);
assert_eq!(luaify!(|| a = b << c), r#"function()a=bit.lshift(b,c);end"#);
assert_eq!(
luaify!(|| a <<= b << c),
r#"function()a=bit.lshift(a,bit.lshift(b,c));end"#
);
assert_eq!(
luaify!(|| a = b >> c),
r#"function()a=bit.arshift(b,c);end"#
);
assert_eq!(
luaify!(|| a >>= b >> c),
r#"function()a=bit.arshift(a,bit.arshift(b,c));end"#
);
assert_eq!(luaify!(|| a && b), r#"function()return a and b;end"#);
assert_eq!(luaify!(|| a || b), r#"function()return a or b;end"#);
assert_eq!(
luaify!(|| (a && b) || c),
r#"function()return(a and b)or c;end"#
);
assert_eq!(
luaify!(|| (a || b) && c),
r#"function()return(a or b)and c;end"#
);
assert_eq!(
luaify!(|| a && (b || c)),
r#"function()return a and(b or c);end"#
);
assert_eq!(
luaify!(|| a || (b && c)),
r#"function()return a or(b and c);end"#
);
assert_eq!(
luaify!(|| -a || !--b && c >> d),
r#"function()return-a or not-(-b)and bit.arshift(c,d);end"#
);
assert_eq!(
luaify!(|| -a || !(--b && c) >> d),
r#"function()return-a or bit.arshift(not(-(-b)and c),d);end"#
);
assert_eq!(
luaify!(|| a >> b << c >> d),
r#"function()return bit.arshift(bit.lshift(bit.arshift(a,b),c),d);end"#
);
}
#[test]
fn ifs() {
assert_eq!(
luaify!(|| {
if a == b {
c
}
}),
r#"function()if a==b then return c;end;end"#
);
assert_eq!(
luaify!(|| { if a == b { c } else { d } }),
r#"function()if a==b then return c;else return d;end;end"#
);
assert_eq!(
luaify!(|| {
if a == b {
c()
} else if b == c {
a()
} else {
d()
};
}),
r#"function()if a==b then c();elseif b==c then a();else d();end;end"#
);
assert_eq!(
luaify!(|| {
if a == b {
c()
} else if b == c {
a()
} else {
d()
}
}),
r#"function()if a==b then return c();elseif b==c then return a();else return d();end;end"#
);
assert_eq!(
luaify!(|| {
if a == b {
c();
} else if b == c {
a()
} else {
d();
}
}),
r#"function()if a==b then c();elseif b==c then return a();else d();end;end"#
);
}

3
src/main.rs Normal file
View File

@ -0,0 +1,3 @@
fn main() {
println!("Hello, world!");
}