Implement the foundations for annotation generation

This commit is contained in:
2025-06-28 04:15:27 +10:00
parent 6a4c726965
commit e05e2f4cb3
9 changed files with 510 additions and 268 deletions

View File

@@ -32,7 +32,7 @@ pub fn transform(args: Args, mut item: Item) -> Result<TokenStream> {
let mod_name = format_ident!("__{name}_cdef");
Ok(quote_spanned!(name.span() =>
Ok(quote!(
#[repr(C)]
#[allow(non_camel_case_types)]
#item
@@ -51,10 +51,9 @@ pub fn transform(args: Args, mut item: Item) -> Result<TokenStream> {
fn generate_type(ty: &Ident) -> Result<TokenStream> {
let ffi = ffi_crate();
let span = ty.span();
let name = LitStr::new(&ty.unraw().to_string(), span);
let name = ty.unraw().to_string();
Ok(quote_spanned!(span =>
Ok(quote!(
unsafe impl #ffi::Type for #ty {
fn name() -> impl ::std::fmt::Display { #name }
@@ -71,6 +70,10 @@ fn generate_type(ty: &Ident) -> Result<TokenStream> {
}
}
impl #ffi::Annotation for #ty {
fn annotation() -> impl ::std::fmt::Display { #name }
}
// SAFETY: we can always implement `IntoFfi` because it transfers ownership from Rust to Lua
unsafe impl #ffi::IntoFfi for #ty {
type Into = Self;
@@ -82,7 +85,7 @@ fn generate_type(ty: &Ident) -> Result<TokenStream> {
fn generate_module(name: &str, ty: &Ident) -> Result<TokenStream> {
let ffi = ffi_crate();
Ok(quote_spanned!(ty.span() =>
Ok(quote!(
impl #ffi::Module for #ty {
fn name() -> impl ::std::fmt::Display { #name }
}
@@ -98,10 +101,9 @@ fn generate_cdef_structure(str: &mut ItemStruct) -> Result<TokenStream> {
let ffi = ffi_crate();
let ty = &str.ident;
let span = ty.span();
let build = generate_cdef_build(&get_cfields(&mut str.fields)?)?;
Ok(quote_spanned!(span =>
Ok(quote!(
unsafe impl #ffi::Cdef for #ty {
fn build(b: &mut #ffi::CdefBuilder) { #build }
}
@@ -117,18 +119,16 @@ fn generate_cdef_enum(enu: &mut ItemEnum) -> Result<TokenStream> {
let ffi = ffi_crate();
let ty = &enu.ident;
let span = ty.span();
let build = enu
.variants
.iter_mut()
.map(|variant| {
let span = variant.span();
let build = generate_cdef_build(&get_cfields(&mut variant.fields)?)?;
Ok(quote_spanned!(span => b.inner_struct(|b| { #build })))
Ok(quote!(b.inner_struct(|b| { #build })))
})
.collect::<Result<Vec<_>>>()?;
Ok(quote_spanned!(span =>
Ok(quote!(
unsafe impl #ffi::Cdef for #ty {
fn build(b: &mut #ffi::CdefBuilder) {
b.field::<::std::ffi::c_int>("__tag").inner_union(|b| { #(#build;)* });
@@ -201,7 +201,7 @@ fn generate_cdef_build(fields: &[CField]) -> Result<TokenStream> {
for (i, field) in fields.iter().enumerate() {
let ty = &field.ty;
let offset = offset(i);
body.push(quote_spanned!(ty.span() =>
body.push(quote!(
// round up current offset to the alignment of field type for field offset
offset = (offset + #align_of::<#ty>() - 1) & !(#align_of::<#ty>() - 1);
align = #max(align, #align_of::<#ty>());

View File

@@ -21,7 +21,7 @@ pub fn transform(args: Args, mut imp: ItemImpl) -> Result<TokenStream> {
let impls = generate_impls(&args, &mut imp)?;
let mod_name = format_ident!("__{}_metatype", ty_name(&imp.self_ty)?);
Ok(quote_spanned!(imp.self_ty.span() =>
Ok(quote!(
#imp
#[doc(hidden)]
@@ -119,7 +119,7 @@ fn generate_impls(_args: &Args, imp: &mut ItemImpl) -> Result<TokenStream> {
let build = &registry.build;
let exports = generate_ffi_exports(&registry)?;
Ok(quote_spanned!(ty.span() =>
Ok(quote!(
impl #ty { #(#shims)* }
unsafe impl #ffi::Metatype for #ty {
@@ -219,10 +219,10 @@ impl ToTokens for Metamethod {
struct FfiFunction {
name: Ident,
is_async: bool,
params: Vec<PatType>,
params: Vec<(Ident, Type)>,
ret: Type,
attrs: FfiFunctionAttrs,
is_async: bool,
}
#[derive(Default)]
@@ -251,30 +251,31 @@ fn get_ffi_functions(imp: &mut ItemImpl) -> Result<Vec<FfiFunction>> {
.sig
.inputs
.iter()
.map(|arg| match arg {
FnArg::Receiver(recv) => {
let ty = &recv.ty;
parse_quote_spanned!(ty.span() => self: #ty)
}
FnArg::Typed(ty) => ty.clone(),
.map(|arg| {
Ok(match arg {
FnArg::Receiver(recv) => {
(Ident::new("self", recv.span()), (*recv.ty).clone())
}
FnArg::Typed(ty) => (pat_ident(&ty.pat)?.clone(), (*ty.ty).clone()),
})
})
.collect();
.collect::<Result<_>>()?;
let ret = match func.sig.output {
ReturnType::Default => parse_quote!(()),
ReturnType::Type(_, ref ty) => (**ty).clone(),
};
for param in params.iter() {
// double underscores are reserved for generated glue code
for (name, ty) in params.iter() {
// double underscores are reserved for glue code
syn_assert!(
!pat_ident(&param.pat)?.to_string().starts_with("__"),
param.pat,
!name.to_string().starts_with("__"),
name,
"parameter names should not start with `__`"
);
// lifetime should be determined by the caller (lua)
if let Type::Reference(ref ty) = *param.ty {
// lifetime should be determined by the caller (which is lua)
if let Type::Reference(ty) = ty {
syn_assert!(
ty.lifetime.is_none(),
ty.lifetime,
@@ -290,10 +291,10 @@ fn get_ffi_functions(imp: &mut ItemImpl) -> Result<Vec<FfiFunction>> {
funcs.push(FfiFunction {
name: func.sig.ident.clone(),
is_async: func.sig.asyncness.is_some(),
params,
ret,
attrs,
is_async: func.sig.asyncness.is_some(),
});
}
}
@@ -387,16 +388,8 @@ fn add_ffi_function(registry: &mut Registry, func: &FfiFunction) -> Result<()> {
let func_params = &func.params; // target function parameters
let func_ret = &func.ret; // target function return type
let mut func_args = vec![]; // target function arguments
let mut shim_params = vec![]; // shim function parameters
let mut shim_ret = if func.is_async {
// shim function return type
quote_spanned!(func_ret.span() => #ffi::future::lua_future<impl ::std::future::Future<Output = #func_ret>>)
} else {
quote_spanned!(func_ret.span() => <#func_ret as #ffi::IntoFfi>::Into)
};
let mut asserts = vec![]; // compile-time builder asserts
let mut asserts = vec![]; // compile-time asserts
let mut build = vec![]; // ffi builder body
// for __new metamethods, ignore the first argument (ctype of self, for which there is no
@@ -407,99 +400,102 @@ fn add_ffi_function(registry: &mut Registry, func: &FfiFunction) -> Result<()> {
));
}
for (i, param) in func_params.iter().enumerate() {
let func_param = &param.ty;
for (i, (name, func_param)) in func_params.iter().enumerate() {
let span = func_param.span();
let name = name.unraw().to_string();
let shim_param = format_ident!("arg{i}");
let name = pat_ident(&param.pat)?.unraw().to_string();
match get_ffi_param_type(func_param) {
FfiParameterType::Default => {
shim_params.push(quote_spanned!(func_param.span() =>
shim_params.push(quote_spanned!(span =>
#shim_param: <#func_param as #ffi::FromFfi>::From
));
func_args.push(quote_spanned!(param.pat.span() =>
func_args.push(quote_spanned!(span =>
<#func_param as #ffi::FromFfi>::convert(#shim_param)
));
build.push(quote_spanned!(param.pat.span() =>
build.push(quote_spanned!(span =>
b.param::<#func_param>(#name);
));
}
ty @ (FfiParameterType::StringLike(str) | FfiParameterType::OptionStringLike(str)) => {
let shim_param_len = format_ident!("arg{i}_len");
shim_params.push(quote_spanned!(func_param.span() =>
shim_params.push(quote_spanned!(span =>
#shim_param: ::std::option::Option<&::std::primitive::u8>,
#shim_param_len: ::std::primitive::usize
));
let allow_nil = matches!(ty, FfiParameterType::OptionStringLike(_));
let check_utf8 = matches!(str, StringLike::Str);
let mut func_arg = quote_spanned!(func_param.span() =>
let mut func_arg = quote_spanned!(span =>
#shim_param.map(|s| ::std::slice::from_raw_parts(s, #shim_param_len))
);
func_arg = match str {
StringLike::SliceU8 => func_arg,
StringLike::BStr => {
quote_spanned!(func_param.span() => #func_arg.map(::bstr::BStr::new))
quote_spanned!(span => #func_arg.map(::bstr::BStr::new))
}
StringLike::Str => {
quote_spanned!(func_param.span() => #func_arg.map(|s| {
quote_spanned!(span => #func_arg.map(|s| {
::std::debug_assert!(::std::str::from_utf8(s).is_ok());
::std::str::from_utf8_unchecked(s)
}))
}
};
if !allow_nil {
func_arg = quote_spanned!(func_param.span() => {
func_arg = quote_spanned!(span => {
let arg = #func_arg;
::std::debug_assert!(arg.is_some());
arg.unwrap_unchecked()
});
}
func_args.push(func_arg);
build.push(quote_spanned!(param.pat.span() =>
build.push(quote_spanned!(span =>
b.param_str(#name, #allow_nil, #check_utf8);
));
}
}
}
// shim function body
let mut shim_body = if func.is_async {
// for async functions, wrapped the returned future in lua_future
quote_spanned!(func_name.span() => #ffi::future::lua_future::new(Self::#func_name(#(#func_args),*)))
} else {
quote_spanned!(func_name.span() => <#func_ret as #ffi::IntoFfi>::convert(Self::#func_name(#(#func_args),*)))
};
let func_call = quote!(Self::#func_name(#(#func_args),*)); // target function call
if !func.is_async {
// shim function body and return type
let (shim_body, shim_ret) = if func.is_async {
let span = func_ret.span();
(
// for async functions, wrapped the returned future in lua_future
quote_spanned!(span => #ffi::future::lua_future::new(#func_call)),
quote_spanned!(span => #ffi::future::lua_future<impl ::std::future::Future<Output = #func_ret>>),
)
} else {
let span = func_ret.span();
match get_ffi_ret_type(&func_ret) {
FfiReturnType::Void => {
asserts.push(quote_spanned!(func_ret.span() =>
asserts.push(quote_spanned!(span =>
<<#func_ret as #ffi::IntoFfi>::Into as #ffi::Type>::ty() == #ffi::TypeType::Void
));
(func_call, quote_spanned!(span => ()))
}
FfiReturnType::ByValue => {
asserts.push(quote_spanned!(func_ret.span() =>
asserts.push(quote_spanned!(span =>
<#func_ret as #ffi::IntoFfi>::convention() == #ffi::FfiReturnConvention::ByValue
));
(
quote_spanned!(span => <#func_ret as #ffi::IntoFfi>::convert(#func_call)),
quote_spanned!(span => <#func_ret as #ffi::IntoFfi>::Into),
)
}
FfiReturnType::ByOutParam => {
asserts.push(quote_spanned!(func_ret.span() =>
asserts.push(quote_spanned!(span =>
<#func_ret as #ffi::IntoFfi>::convention() == #ffi::FfiReturnConvention::ByOutParam
));
shim_params.insert(0, quote_spanned!(func_ret.span() => out: *mut #shim_ret));
(shim_body, shim_ret) = (
quote_spanned!(func_ret.span() => ::std::ptr::write(out, #shim_body)),
quote_spanned!(func_ret.span() => ()),
);
let out = quote_spanned!(span => out: *mut <#func_ret as #ffi::IntoFfi>::Into);
shim_params.insert(0, out);
(
quote_spanned!(span => ::std::ptr::write(out, <#func_ret as #ffi::IntoFfi>::convert(#func_call))),
quote_spanned!(span => ()),
)
}
};
}
// build.push(quote_spanned!(func_name.span() =>
// b.call_inferred(#c_name, Self::#func_name);
// ));
}
};
build.push({
let infer_args = iter::repeat_n(quote!(::std::unreachable!()), func_params.len());
@@ -508,23 +504,16 @@ fn add_ffi_function(registry: &mut Registry, func: &FfiFunction) -> Result<()> {
} else {
quote!(|| Self::#func_name(#(#infer_args),*))
};
quote_spanned!(func_name.span() => b.call_inferred(#c_name, #infer);)
quote!(b.call_inferred(#c_name, #infer);)
});
registry.build.push(quote_spanned!(func_name.span() =>
#(::std::assert!(#asserts);)*
));
registry.build.push(quote!(#(::std::assert!(#asserts);)*));
registry.build.push(match func.attrs.metamethod {
Some(ref mm) => quote_spanned!(func_name.span() =>
b.metatable(#mm, |b| { #(#build)* });
),
None => quote_spanned!(func_name.span() =>
b.index(#lua_name, |b| { #(#build)* });
),
Some(ref mm) => quote!(b.metatable(#mm, |b| { #(#build)* });),
None => quote!(b.index(#lua_name, |b| { #(#build)* });),
});
registry.shims.push(parse_quote_spanned!(func_name.span() =>
registry.shims.push(parse_quote!(
#[unsafe(export_name = #c_name)]
unsafe extern "C" fn #shim_name(#(#shim_params),*) -> #shim_ret { unsafe { #shim_body } }
));
@@ -536,7 +525,7 @@ fn generate_ffi_exports(registry: &Registry) -> Result<TokenStream> {
let ty = &registry.ty;
let names = registry.shims.iter().map(|f| &f.sig.ident);
Ok(quote_spanned!(ty.span() =>
Ok(quote!(
// this ensures ffi function symbol exports are actually present in the resulting binary,
// otherwise they may get dead code-eliminated before it reaches the linker
#[used]
@@ -583,18 +572,14 @@ fn get_lua_functions(imp: &mut ItemImpl) -> Result<Vec<LuaFunction>> {
.sig
.inputs
.iter()
.map(|arg| {
Ok(match arg {
FnArg::Receiver(recv) => Pat::Type(parse_quote_spanned!(recv.span() =>
self: cdata
)),
FnArg::Typed(ty) => Pat::Type(ty.clone()),
})
.map(|arg| match arg {
FnArg::Receiver(recv) => parse_quote_spanned!(recv.span() => self),
FnArg::Typed(ty) => (*ty.pat).clone(), // ignore parameter type (only used for documentation purposes)
})
.collect::<Result<_>>()?;
.collect();
if let Some(ref variadic) = func.sig.variadic {
params.push(parse_quote_spanned!(variadic.span() => variadic!()));
params.push(parse_quote_spanned!(variadic.span() => variadic!())); // luaify builtin macro
}
let attrs = parse_lua_function_attrs(&mut func.attrs)?;
@@ -625,62 +610,45 @@ fn stub_lua_function(func: &mut ImplItemFn) -> Result<()> {
func.attrs.push(parse_quote!(#[allow(unused)]));
func.block.stmts.clear();
func.block.stmts.push(parse_quote!(
::std::unreachable!("cannot call lua function from rust");
const fn has_annotation<T: #ffi::Annotation>() {}
));
let inputs = &mut func.sig.inputs;
let output = &mut func.sig.output;
for input in inputs.iter_mut() {
if let FnArg::Typed(pat) = input
&& let Ok(stub) = stub_lua_type(&pat.ty)
{
pat.ty = stub.into();
}
}
if let ReturnType::Type(_, ty) = output
&& let Ok(stub) = stub_lua_type(ty)
{
*ty = stub.into();
}
// convert `...` variadic to a `rest: luaffi::marker::Many` parameter
if let Some(ref variadic) = func.sig.variadic {
let ty = quote_spanned!(variadic.span() => variadic);
inputs.push(parse_quote!(rest: #ffi::__internal::stub_types::#ty));
let param = Ident::new("rest", variadic.span());
let ty = quote_spanned!(variadic.span() => many);
func.sig.variadic = None;
func.sig
.inputs
.push(parse_quote!(#param: #ffi::marker::#ty));
}
for param in func.sig.inputs.iter() {
let ty = match param {
FnArg::Receiver(recv) => &recv.ty,
FnArg::Typed(ty) => &ty.ty,
};
// temporary assertion until we implement annotation generation
func.block.stmts.push(parse_quote!(
has_annotation::<#ty>();
));
}
// temporary assertion until we implement annotation generation
if let ReturnType::Type(_, ref ty) = func.sig.output {
func.block.stmts.push(parse_quote!(
has_annotation::<#ty>();
));
}
func.block.stmts.push(parse_quote!(
::std::unreachable!(r#"cannot call extern "Lua" function from rust"#);
));
Ok(())
}
fn stub_lua_type(ty: &Type) -> Result<Type> {
let ffi = ffi_crate();
let span = ty.span();
let ty = if let Type::Infer(_) = ty {
quote_spanned!(span => any)
} else {
match ty_name(ty)?.to_string().as_str() {
"any" => quote_spanned!(span => any),
"many" => quote_spanned!(span => many),
"nil" => quote_spanned!(span => nil),
"boolean" => quote_spanned!(span => boolean),
"lightuserdata" => quote_spanned!(span => lightuserdata),
"number" => quote_spanned!(span => number),
"integer" => quote_spanned!(span => integer),
"string" => quote_spanned!(span => string),
"table" => quote_spanned!(span => table),
"function" => quote_spanned!(span => function),
"userdata" => quote_spanned!(span => userdata),
"thread" => quote_spanned!(span => thread),
"cdata" => quote_spanned!(span => cdata),
_ => syn_error!(ty, "unknown lua type"),
}
};
Ok(parse_quote!(#ffi::__internal::stub_types::#ty))
}
fn parse_lua_function_attrs(attrs: &mut Vec<Attribute>) -> Result<LuaFunctionAttrs> {
let mut parsed = LuaFunctionAttrs::default();
let mut i = 0;
@@ -707,12 +675,8 @@ fn add_lua_function(registry: &mut Registry, func: &LuaFunction) -> Result<()> {
let name = func_name.unraw().to_string();
registry.build.push(match func.attrs.metamethod {
Some(ref mm) => quote_spanned!(func_name.span() =>
b.metatable_raw(#mm, #luaify(|#(#params),*| #body));
),
None => quote_spanned!(func_name.span() =>
b.index_raw(#name, #luaify(|#(#params),*| #body));
),
Some(ref mm) => quote!(b.metatable_raw(#mm, #luaify(|#(#params),*| #body));),
None => quote!(b.index_raw(#name, #luaify(|#(#params),*| #body));),
});
Ok(())
@@ -747,46 +711,36 @@ fn inject_merged_drop(registry: &mut Registry, lua: Option<&LuaFunction>) -> Res
"finaliser must take exactly one parameter"
);
match lua.params[0] {
// should be `self: cdata` PatType
Pat::Type(ref ty) => {
syn_assert!(
pat_ident(&ty.pat)? == "self",
lua.params[0],
"finaliser parameter must be `self`"
);
}
_ => syn_error!(lua.params[0], "finaliser parameter must be `self`"),
}
let params = &lua.params;
let param = pat_ident(&lua.params[0])?;
let body = &lua.body;
registry.build.push(quote_spanned!(ty.span() =>
syn_assert!(param == "self", param, "finaliser parameter must be `self`");
registry.build.push(quote!(
if ::std::mem::needs_drop::<Self>() {
// if we have both a lua-side finaliser and a rust drop, then merge the finalisers
// by doing the lua part first then drop rust
b.declare::<#ffi::UnsafeExternCFn<(*mut Self,), ()>>(#c_name_str);
b.declare::<#ffi::ExternCFn<(*mut Self,), ()>>(#c_name_str);
b.metatable_raw("gc", #luaify(|self| {
raw!(#luaify(#body)); // embed the lua part inside a do block
__C::#c_name(self);
}));
} else {
// we only have a lua-side finaliser
b.metatable_raw("gc", #luaify(|#(#params),*| #body));
b.metatable_raw("gc", #luaify(|self| #body));
}
));
} else {
registry.build.push(quote_spanned!(ty.span() =>
registry.build.push(quote!(
if ::std::mem::needs_drop::<Self>() {
// we only have a rust drop
b.declare::<#ffi::UnsafeExternCFn<(*mut Self,), ()>>(#c_name_str);
b.declare::<#ffi::ExternCFn<(*mut Self,), ()>>(#c_name_str);
b.metatable_raw("gc", ::std::format_args!("__C.{}", #c_name_str));
}
));
}
registry.shims.push(parse_quote_spanned!(ty.span() =>
registry.shims.push(parse_quote!(
#[unsafe(export_name = #c_name_str)]
unsafe extern "C" fn #shim_name(ptr: *mut Self) {
unsafe { ::std::ptr::drop_in_place(ptr) }